# Multisensory Integration DEMO In `MultisensoryIntegrationDEMO_AM.py` and `MultisensoryIntegrationDEMO_AM.py`, we implement the SNNs based multisensory integration framework. To load the dataset, preprocess it and get the weights with the function `get_concept_datase_dic_and_initial_weights_lst()`​. We use `IMNet`​ or ​`AMNet`​ to describe the structure of the IM/AM model. For presynaptic neuron, we use the function `convert_vec_into_spike_trains()​` to generate the spike trains. While for postsynaptic neuron, we use the function `reducing_tol_binarycode()` to get the multisensory integrated output for each concept. And *tol* is the only parameter. In `measure_and_visualization.py`, we will measure and visualize the results. ## Multisensory Dataset When implement the model in braincog, we use the famous multisensory dataset--BBSR. Some examples are as follows: | Concept | Visual | Somatic | Audiation | Taste | Smell | | --------- | ----------- | --------- | ----------- | -------- | -------- | | advantage | 0.213333333 | 0.032 | 0 | 0 | 0 | | arm | 2.5111112 | 2.2733334 | 0.133333286 | 0.233333 | 0.4 | | ball | 1.9580246 | 2.3111112 | 0.523809429 | 0.185185 | 0.111111 | | baseball | 2.2714286 | 2.6071428 | 0.352040714 | 0.071429 | 0.392857 | | bee | 2.795698933 | 2.4129034 | 2.096774286 | 0.290323 | 0.419355 | | beer | 1.4866666 | 2.2533334 | 0.190476286 | 5.8 | 4.6 | | bird | 2.7632184 | 2.027586 | 3.064039286 | 1.068966 | 0.517241 | | car | 2.521839133 | 2.9517244 | 2.216748857 | 0 | 2.206897 | | foot | 2.664444533 | 2.58 | 0.380952429 | 0.433333 | 3 | | honey | 1.757142867 | 2.3214286 | 0.015306143 | 5.642857 | 4.535714 | ## How to Run To get the multisensory integrated vectors: ``` cd examples/MultisensoryIntegration/code python MultisensoryIntegrationDEMO_AM.py python MultisensoryIntegrationDEMO_IM.py ``` To measure and analysis the vectors: ``` cd examples/MultisensoryIntegration/code python measure_and_visualization.py ```