braincog.base.brainarea package
Submodules
braincog.base.brainarea.BrainArea module
- class braincog.base.brainarea.BrainArea.BrainArea
基类:
Module
,ABC
脑区基类
- abstract forward(x)
计算前向传播过程 :return:x是脉冲
- reset()
计算前向传播过程 :return:x是脉冲
- training: bool
- class braincog.base.brainarea.BrainArea.Feedback(w1, w2, w3)
基类:
BrainArea
反馈网络
- forward(x)
计算前向传播过程 :return:x是脉冲
- reset()
计算前向传播过程 :return:x是脉冲
- training: bool
- class braincog.base.brainarea.BrainArea.SelfConnectionArea(w1, w2)
基类:
BrainArea
反馈网络
- forward(x)
计算前向传播过程 :return:x是脉冲
- reset()
计算前向传播过程 :return:x是脉冲
- training: bool
braincog.base.brainarea.IPL module
- class braincog.base.brainarea.IPL.IPLNet(connection)
基类:
Module
inferior parietal lobule (IPL)
- UpdateWeight(i, dw)
Update the weight :param i: index of the connection to update :param dw: weight update :return: None
- forward(input1, input2)
Calculate the output of IPLv and the weight update between IPLm and IPLv :param input1: input from vPMC :param input2: input from STS :return: output of IPLv, weight update between IPLm and IPLv
- getweight()
Get the connection and weight in IPL :return: connection
- reset()
reset the network :return: None
- training: bool
braincog.base.brainarea.Insula module
- class braincog.base.brainarea.Insula.InsulaNet(connection)
基类:
Module
Insula
- UpdateWeight(i, dw)
Update the weight :param i: index of the connection to update :param dw: weight update :return: None
- forward(input1, input2)
Calculate the output of Insula :param input1: input from IPLv :param input2: input from STS :return: output of Insula, weight update (unused)
- getweight()
Get the connection and weight in Insula :return: connection
- reset()
reset the network :return: None
- training: bool
braincog.base.brainarea.PFC module
- class braincog.base.brainarea.PFC.dlPFC(step, encode_type, in_features: int, out_features: int, bias, *args, **kwargs)
基类:
BaseModule
,PFC
SNNLinear
- training: bool
braincog.base.brainarea.basalganglia module
- class braincog.base.brainarea.basalganglia.basalganglia(ns, na, we, wi, node_type)
基类:
Module
Basal Ganglia
- UpdateWeight(i, dw)
更新基底节内第i组连接的权重 根据传入的dw值 :param i: 要更新的连接的索引 :param dw: 更新的量 :return: None
- forward(input)
计算由当前输入基底节网络的输出 :param input: 输入电流 :return: 输出脉冲
- getmask()
获取基底节网络的连接(仅连接矩阵) :return: 基底节网络的连接矩阵
- getweight()
获取基底节网络的连接(包括权值等) :return: 基底节网络的连接
- reset()
reset神经元或学习法则的中间量 :return: None
- training: bool
braincog.base.brainarea.dACC module
Module contents
- class braincog.base.brainarea.BrainArea
基类:
Module
,ABC
脑区基类
- abstract forward(x)
计算前向传播过程 :return:x是脉冲
- reset()
计算前向传播过程 :return:x是脉冲
- training: bool
- class braincog.base.brainarea.Feedback(w1, w2, w3)
基类:
BrainArea
反馈网络
- forward(x)
计算前向传播过程 :return:x是脉冲
- reset()
计算前向传播过程 :return:x是脉冲
- training: bool
- class braincog.base.brainarea.IPLNet(connection)
基类:
Module
inferior parietal lobule (IPL)
- UpdateWeight(i, dw)
Update the weight :param i: index of the connection to update :param dw: weight update :return: None
- forward(input1, input2)
Calculate the output of IPLv and the weight update between IPLm and IPLv :param input1: input from vPMC :param input2: input from STS :return: output of IPLv, weight update between IPLm and IPLv
- getweight()
Get the connection and weight in IPL :return: connection
- reset()
reset the network :return: None
- training: bool
- class braincog.base.brainarea.InsulaNet(connection)
基类:
Module
Insula
- UpdateWeight(i, dw)
Update the weight :param i: index of the connection to update :param dw: weight update :return: None
- forward(input1, input2)
Calculate the output of Insula :param input1: input from IPLv :param input2: input from STS :return: output of Insula, weight update (unused)
- getweight()
Get the connection and weight in Insula :return: connection
- reset()
reset the network :return: None
- training: bool
- class braincog.base.brainarea.SelfConnectionArea(w1, w2)
基类:
BrainArea
反馈网络
- forward(x)
计算前向传播过程 :return:x是脉冲
- reset()
计算前向传播过程 :return:x是脉冲
- training: bool
- class braincog.base.brainarea.ThreePointForward(w1, w2, w3)
基类:
BrainArea
三点前馈脑区
- forward(x)
计算前向传播过程 :return:x是脉冲
- training: bool
- class braincog.base.brainarea.TwoInOneOut(w1, w2)
基类:
BrainArea
反馈网络
- forward(x1, x2)
计算前向传播过程 :return:x是脉冲
- training: bool
- class braincog.base.brainarea.basalganglia(ns, na, we, wi, node_type)
基类:
Module
Basal Ganglia
- UpdateWeight(i, dw)
更新基底节内第i组连接的权重 根据传入的dw值 :param i: 要更新的连接的索引 :param dw: 更新的量 :return: None
- forward(input)
计算由当前输入基底节网络的输出 :param input: 输入电流 :return: 输出脉冲
- getmask()
获取基底节网络的连接(仅连接矩阵) :return: 基底节网络的连接矩阵
- getweight()
获取基底节网络的连接(包括权值等) :return: 基底节网络的连接
- reset()
reset神经元或学习法则的中间量 :return: None
- training: bool
- class braincog.base.brainarea.dlPFC(step, encode_type, in_features: int, out_features: int, bias, *args, **kwargs)
基类:
BaseModule
,PFC
SNNLinear
- training: bool