Multisensory Integration DEMO
In MultisensoryIntegrationDEMO_AM.py
and MultisensoryIntegrationDEMO_AM.py
, we implement the SNNs based multisensory integration framework. To load the dataset, preprocess it and get the weights with the function get_concept_datase_dic_and_initial_weights_lst()
. We use IMNet
or AMNet
to describe the structure of the IM/AM model. For presynaptic neuron, we use the function convert_vec_into_spike_trains()
to generate the spike trains.
While for postsynaptic neuron, we use the function reducing_tol_binarycode()
to get the multisensory integrated output for each concept. And tol is the only parameter.
In measure_and_visualization.py
, we will measure and visualize the results.
Multisensory Dataset
When implement the model in braincog, we use the famous multisensory dataset–BBSR.
Some examples are as follows:
Concept | Visual | Somatic | Audiation | Taste | Smell |
---|---|---|---|---|---|
advantage | 0.213333333 | 0.032 | 0 | 0 | 0 |
arm | 2.5111112 | 2.2733334 | 0.133333286 | 0.233333 | 0.4 |
ball | 1.9580246 | 2.3111112 | 0.523809429 | 0.185185 | 0.111111 |
baseball | 2.2714286 | 2.6071428 | 0.352040714 | 0.071429 | 0.392857 |
bee | 2.795698933 | 2.4129034 | 2.096774286 | 0.290323 | 0.419355 |
beer | 1.4866666 | 2.2533334 | 0.190476286 | 5.8 | 4.6 |
bird | 2.7632184 | 2.027586 | 3.064039286 | 1.068966 | 0.517241 |
car | 2.521839133 | 2.9517244 | 2.216748857 | 0 | 2.206897 |
foot | 2.664444533 | 2.58 | 0.380952429 | 0.433333 | 3 |
honey | 1.757142867 | 2.3214286 | 0.015306143 | 5.642857 | 4.535714 |
How to Run
To get the multisensory integrated vectors:
cd examples/MultisensoryIntegration/code
python MultisensoryIntegrationDEMO_AM.py
python MultisensoryIntegrationDEMO_IM.py
To measure and analysis the vectors:
cd examples/MultisensoryIntegration/code
python measure_and_visualization.py